
NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. Riemann Integrals

Notation 1.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a, b]. And m ≤ f ≤M .
(ii) : P : a = x0 < x1 < .... < xn = b denotes a partition on [a, b]; ∆xi = xi − xi−1 and
‖P‖ = max ∆xi.

(iii) : Mi(f,P) := sup{f(x) : x ∈ [xi−1, xi}; mi(f,P) := inf{f(x) : x ∈ [xi−1, xi}. And ωi(f,P) =
Mi(f,P)−mi(f,P).

(iv) : U(f,P) :=
∑
Mi(f,P)∆xi; L(f,P) :=

∑
mi(f,P)∆xi.

(v) : R(f,P, {ξi}) :=
∑
f(ξi)∆xi, where ξi ∈ [xi−1, xi].

(vi) : R[a, b] is the class of all Riemann integral functions on [a, b].

Definition 1.2. We say that the Riemann sum R(f,P, {ξi}) converges to a number A as ‖P‖ → 0 if
for any ε > 0, there is δ > 0 such that

|A− R(f,P, {ξi})| < ε

for any ξi ∈ [xi−1, xi] whenever ‖P‖ < δ.

Theorem 1.3. f ∈ R[a, b] if and only if for any ε > 0, there is a partition P such that U(f,P) −
L(f,P) < ε.

Lemma 1.4. f ∈ R[a, b] if and only if for any ε > 0, there is δ > 0 such that U(f,P) − L(f,P) < ε
whenever ‖P‖ < δ.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over [a, b]. Let ε > 0. Then there is a partition Q : a = y0 < ... < yl = b on
[a, b] such that U(f,Q)− L(f,Q) < ε. Now take 0 < δ < ε/l. Suppose that P : a = x0 < ... < xn = b
with ‖P‖ < δ. Then we have

U(f,P)− L(f,P) = I + II

where
I =

∑
i:Q∩(xi−1,xi)=∅

ωi(f,P)∆xi;

and
II =

∑
i:Q∩(xi−1,xi)6=∅

ωi(f,P)∆xi

Notice that we have
I ≤ U(f,Q)− L(f,Q) < ε

and
II ≤ (M −m)

∑
i:Q∩(xi−1,xi)6=∅

∆xi ≤ (M −m) · l · ε
l

= (M −m)ε.

The proof is finished. �
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Theorem 1.5. f ∈ R[a, b] if and only if the Riemann sum R(f,P, {ξi}) is convergent. In this case,

R(f,P, {ξi}) converges to

∫ b

a
f(x)dx as ‖P‖ → 0.

Proof. For the proof (⇒) : we first note that we always have

L(f,P) ≤ R(f,P, {ξi}) ≤ U(f,P)

and

L(f,P) ≤
∫ b

a
f(x)dx ≤ U(f,P)

for any ξi ∈ [xi−1, xi] and for all partition P.
Now let ε > 0. Lemma 1.4 gives δ > 0 such that U(f,P)− L(f,P) < ε as ‖P‖ < δ. Then we have

|
∫ b

a
f(x)dx− R(f,P, {ξi})| < ε

as ‖P‖ < δ. The necessary part is proved and R(f,P, {ξi}) converges to

∫ b

a
f(x)dx.

For (⇐) : there exists a number A such that for any ε > 0, there is δ > 0, we have

A− ε < R(f,P, {ξi}) < A+ ε

for any partition P with ‖P‖ < δ and ξi ∈ [xi−1, xi].
Now fix a partition P with ‖P‖ < δ. Then for each [xi−1, xi], choose ξi ∈ [xi−1, xi] such that Mi(f,P)−
ε ≤ f(ξi). This implies that we have

U(f,P)− ε(b− a) ≤ R(f,P, {ξi}) < A+ ε.

So we have shown that for any ε > 0, there is a partition P such that

(1.1)

∫ b

a
f(x)dx ≤ U(f,P) ≤ A+ ε(1 + b− a).

By considering −f , note that the Riemann sum of −f will converge to −A. The inequality 1.1 will
imply that for any ε > 0, there is a partition P such that

A− ε(1 + b− a) ≤
∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx ≤ A+ ε(1 + b− a).

The proof is finished. �

Theorem 1.6. Let f ∈ R[c, d] and let φ : [a, b] −→ [c, d] be a strictly increasing C1 function with
f(a) = c and f(b) = d.
Then f ◦ φ ∈ R[a, b], moreover, we have∫ d

c
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt.

Proof. Let A =
∫ d
c f(x)dx. By Theorem 1.5, we need to show that for all ε > 0, there is δ > 0 such

that
|A−

∑
f(φ(ξk))φ

′(ξk)4tk| < ε

for all ξk ∈ [tk−1, tk] whenever Q : a = t0 < ... < tm = b with ‖Q‖ < δ.
Now let ε > 0. Then by Lemma 1.4 and Theorem 1.5, there is δ1 > 0 such that

(1.2) |A−
∑

f(ηk)4xk| < ε

and

(1.3)
∑

ωk(f,P)4xk < ε
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for all ηk ∈ [xk−1, xk] whenever P : c = x0 < ... < xm = d with ‖P‖ < δ1.
Now put x = φ(t) for t ∈ [a, b].
Now since φ and φ′ are continuous on [a, b], there is δ > 0 such that |φ(t) − φ(t′)| < δ1 and |φ′(t) −
φ′(t′)| < ε for all t, t′ in[a, b] with |t− t′| < δ.
Now let Q : a = t0 < ... < tm = b with ‖Q‖ < δ. If we put xk = φ(tk), then P : c = x0 < .... < xm = d
is a partition on [c, d] with ‖P‖ < δ1 because φ is strictly increasing.
Note that the Mean Value Theorem implies that for each [tk−1, tk], there is ξ∗k ∈ (tk−1, tk) such that

4xk = φ(tk)− φ(tk−1) = φ′(ξ∗k)4tk.

This yields that

(1.4) |4xk − φ′(ξk)4tk| < ε4tk

for any ξk ∈ [tk−1, tk] for all k = 1, ...,m because of the choice of δ.
Now for any ξk ∈ [tk−1, tk], we have

(1.5)

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ |A−

∑
f(φ(ξ∗k))φ′(ξ∗k)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk|

+ |
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

Notice that inequality 1.2 implies that

|A−
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk| = |A−
∑

f(φ(ξ∗k))4xk| < ε.

Also, since we have |φ′(ξ∗k)− φ′(ξk)| < ε for all k = 1, ..,m, we have

|
∑

f(φ(ξ∗k))φ′(ξ∗k)4tk −
∑

f(φ(ξ∗k))φ′(ξk)4tk| ≤M(b− a)ε

where |f(x)| ≤M for all x ∈ [c, d].
On the other hand, by using inequality 1.4 we have

|φ′(ξk)4tk| ≤ 4xk + ε4tk

for all k. This, together with inequality 1.3 imply that

|
∑

f(φ(ξ∗k))φ′(ξk)4tk −
∑

f(φ(ξk))φ
′(ξk)4tk|

≤
∑

ωk(f,P)|φ′(ξk)4tk| (∵ φ(ξ∗k), φ(ξk) ∈ [xk−1, xk])

≤
∑

ωk(f,P)(4xk + ε4tk)
≤ ε+ 2M(b− a)ε.

Finally by inequality 1.5, we have

|A−
∑

f(φ(ξk))φ
′(ξk)4tk| ≤ ε+M(b− a)ε+ ε+ 2M(b− a)ε.

The proof is finished. �

Example 1.7. Define ( formally) an improper integral Γ(s) ( called the Γ-function) as follows:

Γ(s) :=

∫ ∞
0

xs−1e−xdx

for s ∈ R. Then Γ(s) is convergent if and only if s > 0.
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Proof. Put I(s) :=
∫ 1
0 x

s−1e−xdx and II(s) :=
∫∞
1 xs−1e−xdx. We first claim that the integral II(s)

is convergent for all s ∈ R.
In fact, if we fix s ∈ R, then we have

lim
x→∞

xs−1

ex/2
= 0.

So there is M > 1 such that xs−1

ex/2
≤ 1 for all x ≥M . Thus we have

0 ≤
∫ ∞
M

xs−1e−xdx ≤
∫ ∞
M

e−x/2dx <∞.

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < η < 1, we have

0 ≤
∫ 1

η
xs−1e−xdx ≤

∫ 1

η
xs−1dx =

{
1
s (1− ηs) if s− 1 6= −1;

− ln η otherwise .

Thus the integral I(s) = lim
η→0+

∫ 1

η
xs−1e−xdx is convergent if s > 0.

Conversely, we also have∫ 1

η
xs−1e−xdx ≥ e−1

∫ 1

η
xs−1dx =

{
e−1

s (1− ηs) if s− 1 6= −1;

−e−1 ln η otherwise .

So if s ≤ 0, then
∫ 1
η x

s−1e−xdx is divergent as η → 0+. The result follows. �

2. Uniform Convergence of a Sequence of Differentiable Functions

Proposition 2.1. Let fn : (a, b) −→ R be a sequence of functions. Assume that it satisfies the
following conditions:

(i) : fn(x) point-wise converges to a function f(x) on (a, b);
(ii) : each fn is a C1 function on (a, b);

(iii) : f ′n → g uniformly on (a, b).

Then f is a C1-function on (a, b) with f ′ = g.

Proof. Fix c ∈ (a, b). Then for each x with c < x < b (similarly, we can prove it in the same way as
a < x < c), the Fundamental Theorem of Calculus implies that

fn(x) =

∫ x

c
f ′(t)dt.

Since f ′n → g uniformly on (a, b), we see that∫ x

c
f ′n(t)dt −→

∫ x

c
g(t)dt.

This gives

(2.1) f(x) =

∫ x

c
g(t)dt.

for all x ∈ (c, b). On the other hand, g is continuous on (a, b) since each f ′n is continuous and
f ′n → g uniformly on (a, b). Equation 2.1 will tell us that f ′ exists and f ′ = g on (c, b). The proof is
finished. �

Proposition 2.2. Let (fn) be a sequence of differentiable functions defined on (a, b). Assume that

(i): there is a point c ∈ (a, b) such that lim fn(c) exists;
(ii): f ′n converges uniformly to a function g on (a, b).
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Then

(a): fn converges uniformly to a function f on (a, b);
(b): f is differentiable on (a, b) and f ′ = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ε > 0. Then by the assumptions (i) and (ii), there is a positive integer N such that

|fm(c)− fn(c)| < ε and |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b). Now fix c < x < b and m,n ≥ N . To apply the Mean Value
Theorem for fm − fn on (c, x), then there is a point ξ between c and x such that

(2.2) fm(x)− fn(x) = fm(c)− fn(c) + (f ′m(ξ)− f ′n(ξ))(x− c).
This implies that

|fm(x)− fn(x)| ≤ |fm(c)− fn(c)|+ |f ′m(ξ)− f ′n(ξ)||x− c| < ε+ (b− a)ε

for all m,n ≥ N and for all x ∈ (c, b). Similarly, when x ∈ (a, c), we also have

|fm(x)− fn(x)| < ε+ (b− a)ε.

So Part (a) follows.
Let f be the uniform limit of (fn) on (a, b)
For Part (b), we fix u ∈ (a, b). We are going to show

lim
x→u

f(x)− f(u)

x− u
= g(u).

Let ε > 0. Since fn → f and f ′ → g both are uniformly convergent on (a, b). Then there is N ∈ N
such that

(2.3) |fm(x)− fn(x)| < ε and |f ′m(x)− f ′n(x)| < ε

for all m,n ≥ N and for all x ∈ (a, b)
Note that for all m ≥ N and x ∈ (a, b)\{u}, applying the Mean value Theorem for fm−fN as before,
we have

fm(x)− fN (x)

x− u
=
fm(u)− fN (u)

x− u
+ (f ′m(ξ)− f ′N (ξ))

for some ξ between u and x.
So Eq.2.3 implies that

(2.4) |fm(x)− fm(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε

for all m ≥ N and for all x ∈ (a, b) with x 6= u.
Taking m→∞ in Eq.2.4, we have

|f(x)− f(u)

x− u
− fN (x)− fN (u)

x− u
| ≤ ε.

Hence we have

|f(x)− f(u)

x− u
− f ′N (u)| ≤ |f(x)− f(u)

x− c
− fN (x)− fN (u)

x− u
|+ |fN (x)− fN (u)

x− u
− f ′N (u)|

≤ ε+ |fN (x)− fN (u)

x− u
− f ′N (u)|.

So if we can take 0 < δ such that |fN (x)−fN (u)
x−u − f ′N (u)| < ε for 0 < |x− u| < δ, then we have

(2.5) |f(x)− f(u)

x− u
− f ′N (u)| ≤ 2ε



6 CHI-WAI LEUNG

for 0 < |x − u| < δ. On the other hand, by the choice of N , we have |f ′m(y) − f ′N (y)| < ε for all
y ∈ (a, b) and m ≥ N . So we have |g(u)− f ′N (u)| ≤ ε. This together with Eq.2.5 give

|f(x)− f(u)

x− u
− g(u)| ≤ 3ε

as 0 < |x− u| < δ, that is we have

lim
x→u

f(x)− f(u)

x− u
= g(u).

The proof is finished. �

Remark 2.3. The uniform convergence assumption of (f ′n) in Propositions 2.1 and 2.2 is essential.

Example 2.4. Let fn(x) := tan−1 nx for x ∈ (−1, 1). Then we have

f(x) := lim
n

tan−1 nx =


π/2 if x > 0;

0 if x = 0;

−π/2 if x < 0.

Also g(x) := limn f
′
n(x) = limn 1/(1 + n2x2) = 0 for all x ∈ (−1, 1). So Propositions 2.1 and 2.2 does

not hold. Note that (f ′n) does not converge uniformly to g on (−1, 1).

3. Absolutely convergent series

Throughout this section, let (an) be a sequence of complex numbers.

Definition 3.1. We say that a series

∞∑
n=1

an is absolutely convergent if

∞∑
n=1

|an| <∞.

Also a convergent series
∞∑
n=1

an is said to be conditionally convergent if it is not absolute convergent.

Example 3.2. Important Example : The series

∞∑
n=1

(−1)n+1

nα
is conditionally convergent when

0 < α ≤ 1.
This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.
For instance, if we consider the function f : [1,∞) −→ R given by

f(x) =
(−1)n+1

nα
if n ≤ x < n+ 1.

If α = 1/2, then

∫ ∞
1

f(x)dx is convergent but it is neither absolutely convergent nor square integrable.

Notation 3.3. Let σ : {1, 2...} −→ {1, 2....} be a bijection. A formal series
∞∑
n=1

aσ(n) is called an

rearrangement of
∞∑
n=1

an.
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Example 3.4. In this example, we are going to show that there is an rearrangement of the series
∞∑
i=1

(−1)i+1

i
is divergent although the original series is convergent. In fact, it is conditionally conver-

gent.
We first notice that the series

∑
i

1
2i−1 diverges to infinity. Thus for each M > 0, there is a positive

integer N such that
n∑
i=1

1

2i− 1
≥M · · · · · · · · · (∗)

for all n ≥ N . Then there is N1 ∈ N such that

N1∑
i=1

1

2i− 1
− 1

2
> 1.

By using (∗) again, there is a positive integer N2 with N1 < N2 such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
> 2.

To repeat the same procedure, we can find a positive integers subsequence (Nk) such that

N1∑
i=1

1

2i− 1
− 1

2
+

∑
N1<i≤N2

1

2i− 1
− 1

4
+ · · · · · · · · · −

∑
Nk−1<i≤Nk

1

2i− 1
− 1

2k
> k

for all positive integers k. So if we let an = (−1)n+1

n , then one can find a bijection σ : N→ N such that

the series

∞∑
i=1

aσ(i) is an rearrangement of the series

∞∑
i=1

(−1)i+1

i
and diverges to infinity. The proof

is finished.

Theorem 3.5. Let
∞∑
n=1

an be an absolutely convergent series. Then for any rearrangement
∞∑
n=1

aσ(n)

is also absolutely convergent. Moreover, we have

∞∑
n=1

an =

∞∑
n=1

aσ(n).

Proof. Let σ : {1, 2...} −→ {1, 2...} be a bijection as before.
We first claim that

∑
n aσ(n) is also absolutely convergent.

Let ε > 0. Since
∑

n |an| <∞, there is a positive integer N such that

|aN+1|+ · · · · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗)

for all p = 1, 2.... Notice that since σ is a bijection, we can find a positive integer M such that
M > max{j : 1 ≤ σ(j) ≤ N}. Then σ(i) ≥ N if i ≥ M . This together with (∗) imply that if i ≥ M
and p ∈ N, we have

|aσ(i+1)|+ · · · · · · · · · |aσ(i+p)| < ε.

Thus the series
∑

n aσ(n) is absolutely convergent by the Cauchy criteria.
Finally we claim that

∑
n an =

∑
n aσ(n). Put l =

∑
n an and l′ =

∑
n aσ(n). Now let ε > 0. Then

there is N ∈ N such that

|l −
N∑
n=1

an| < ε and |aN+1|+ · · · · · ·+ |aN+p| < ε · · · · · · · · · (∗∗)
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for all p ∈ N. Now choose a positive integer M large enough so that {1, ..., N} ⊆ {σ(1), ..., σ(M)} and

|l′ −
M∑
i=1

aσ(i)| < ε. Notice that since we have {1, ..., N} ⊆ {σ(1), ..., σ(M)}, the condition (∗∗) gives

|
N∑
n=1

an −
M∑
i=1

aσ(i)| ≤
∑

N<i<∞
|ai| ≤ ε.

We can now conclude that

|l − l′| ≤ |l −
N∑
n=1

an|+ |
N∑
n=1

an −
M∑
i=1

aσ(i)|+ |
M∑
i=1

aσ(i) − l′| ≤ 3ε.

The proof is complete. �

4. Power series

Throughout this section, let

f(x) =

∞∑
i=0

aix
i · · · · · · · · · · · · (∗)

denote a formal power series, where ai ∈ R.

Lemma 4.1. Suppose that there is c ∈ R with c 6= 0 such that f(c) is convergent. Then

(i) : f(x) is absolutely convergent for all x with |x| < |c|.
(ii) : f converges uniformly on [−η, η] for any 0 < η < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim anc
n = 0. So there is a positive integer

N such that |ancn| ≤ 1 for all n ≥ N . Now if we fix |x| < |c|, then |x/c| < 1. Therefore, we have

∞∑
n=1

|an||xn| ≤
N−1∑
n=1

|an||xn|+
∑
n≥N
|ancn||x/c|n ≤

N−1∑
n=1

|an||xn|+
∑
n≥N
|x/c|n <∞.

So Part (i) follows.
Now for Part (ii), if we fix 0 < η < |c| ,then |anxn| ≤ |anη|n for all n and for all x ∈ [−η, η]. On the
other hand, we have

∑
n |anηn| <∞ by Part (i). So f converges uniformly on [−η, η] by the M -test.

The proof is finished. �

Remark 4.2. In Lemma 4.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [−c, c] in general.

For example, f(x) := 1 +

∞∑
n=1

xn

n
. Then f(−1) is convergent but f(1) is divergent.

Definition 4.3. Call the set dom f := {x ∈ R : f(c) is convergent } the domain of convergence of f
for convenience. Let 0 ≤ r := sup{|c| : c ∈ dom f} ≤ ∞. Then r is called the radius of convergence
of f .

Remark 4.4. Notice that by Lemma 4.9, then the domain of convergence of f must be the interval
with the end points ±r if 0 < r <∞.
When r = 0, then dom f = {0}.
Finally, if r =∞, then dom f = R.
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Example 4.5. If f(x) =
∑∞

n=0 n!xn, then r = (0). In fact, notice that if we fix a non-zero number
x and consider limn |(n + 1)!xn+1|/|n!xn| = ∞, then by the ratio test f(x) must be divergent for any
x 6= 0. So r = 0 and dom f = (0).

Example 4.6. Let f(x) = 1 +
∑∞

n=1 x
n/nn. Notice that we have limn |xn/nn|1/n = 0 for all x. So

the root test implies that f(x) is convergent for all x and then r =∞ and dom f = R.

Example 4.7. Let f(x) = 1 +
∑∞

n=1 x
n/n. Then limn |xn+1/(n + 1)| · |n/xn| = |x| for all x 6= 0.

So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(−1) is divergent. Therefore, we
have dom f = [−1, 1).

Example 4.8. Let f(x) =
∑
xn/n2. Then by using the same argument of Example 4.7, we have

r = 1. On the other hand, it is known that f(±1) both are convergent. So dom f = [−1, 1].

Lemma 4.9. With the notation as above, if r > 0, then f converges uniformly on (−η, η) for any
0 < η < r.

Proof. It follows from Lemma 4.1 at once. �

Remark 4.10. Note that the Example 4.7 shows us that f may not converge uniformly on (−r, r).
In fact let f be defined as in Example 4.7. Then f does not converges on (−1, 1). In fact, if we let
sn(x) =

∑∞
k=0 akx

k, then for any positive integer n and 0 < x < 1, we have

|s2n(x)− sn(x)| = xn+1

n+ 1
+ · · · · · ·+ xn

2n
.

From this we see that if n is fixed, then |s2n(x)− sn(x)| → 1/2 as x→ 1−. So for each n, we can find
0 < x < 1 such that |s2n(x)− sn(x)| > 1

2 −
1
4 = 1

4 . Thus f does not converges uniformly on (−1, 1) by
the Cauchy Theorem.

Proposition 4.11. With the notation as above, let ` = lim |an|1/n or lim
|an+1|
|an|

provided it exists.

Then

r =


1
` if 0 < ` <∞;

0 if ` =∞;

∞ if ` = 0.

Proposition 4.12. With the notation as above if 0 < r ≤ ∞, then f ∈ C∞(−r, r). Moreover, the

k-derivatives f (k)(x) =
∑

n≥k akn(n− 1)(n− 2) · · · · · · (n− k + 1)xn−k for all x ∈ (−r, r).

Proof. Fix c ∈ (−r, r). By Lemma 4.9, one can choose 0 < η < r such that c ∈ (−η, η) and f converges
uniformly on (−η, η).

It needs to show that the k-derivatives f (k)(c) exists for all k ≥ 0. Consider the case k = 1 first.
If we consider the series

∑∞
n=0(anx

n)′ =
∑∞

n=1 nanx
n−1, then it also has the same radius r be-

cause limn |nan|1/n = limn |an|1/n. This implies that the series
∑∞

n=1 nanx
n−1 converges uniformly

on (−η, η). Therefore, the restriction f |(−η, η) is differentiable. In particular, f ′(c) exists and
f ′(c) =

∑∞
n=1 nanc

n−1.
So the result can be shown inductively on k. �
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Proposition 4.13. With the notation as above, suppose that r > 0. Then we have∫ x

0
f(t)dt =

∞∑
n=0

∫ x

0
ant

ndt =

∞∑
0

1

n+ 1
anx

n+1

for all x ∈ (−r, r).

Proof. Fix 0 < x < r. Then by Lemma 4.9 f converges uniformly on [0, x]. Since each term ant
n is

continuous, the result follows. �

Theorem 4.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(−r)) exists.
Then f is continuous at x = r (resp. x = −r), that is lim

x→r−
f(x) = f(r).

Proof. Note that by considering f(−x), it suffices to show that the case x = r holds.
Assume r = 1.
Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let ε > 0. Since f(1) is convergent, then there is a positive integer such that

|an+1 + · · · · · · · · ·+ an+p| < ε

for n ≥ N and for all p = 1, 2.... Note that for n ≥ N ; p = 1, 2... and x ∈ [0, 1], we have

(4.1)

sn+p(x)− sn(x) = an+1x
n+1 + an+2x

n+1 + an+3x
n+1 + · · · · · · · · ·+ an+px

n+1

+ an+2(x
n+2 − xn+1) + an+3(x

n+2 − xn+1) + · · · · · · · · ·+ an+p(x
n+2 − xn+1)

+ an+3(x
n+3 − xn+2) + · · · · · · · · ·+ an+p(x

n+3 − xn+2)

...

+ an+p(x
n+p − xn+p−1).

Since x ∈ [0, 1], |xn+k+1 − xn+k| = xn+k − xn+k+1. So the Eq.4.1 implies that

|sn+p(x)−sn(x)| ≤ ε(xn+1+(xn+1−xn+2)+(xn+2−xn+3)+· · ·+(xn+p−1−xn+p)) = ε(2xn+1−xn+p) ≤ 2ε.

So f converges uniformly on [0, 1] as desired.

Finally for the general case, we consider g(x) := f(rx) =
∑

n anr
nxn. Note that limn |anrn|1/n = 1

and g(1) = f(r). Then by the case above,, we have shown that

f(r) = g(1) = lim
x→1−

g(x) = lim
x→r−

f(x).

The proof is finished. �

Remark 4.15. In Remark 4.10, we have seen that f may not converges uniformly on (−r, r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(±r) both exist, then f converges
uniformly on [−r, r] in this case.
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5. Real analytic functions

Proposition 5.1. Let f ∈ C∞(a, b) and c ∈ (a, b). Then for any x ∈ (a, b) \ {c} and for any n ∈ N,
there is ξ = ξ(x, n) between c and x such that

f(x) =

n∑
k=0

f (k)(c)

k!
(x− c)k +

∫ x

c

f (n+1)(t)

n!
(x− t)ndt

Call
∞∑
k=0

f (k)(c)

k!
(x− c)k (may not be convergent) the Taylor series of f at c.

Proof. It is easy to prove by induction on n and the integration by part. �

Definition 5.2. A real-valued function f defined on (a, b) is said to be real analytic if for each
c ∈ (a, b), one can find δ > 0 and a power series

∑∞
k=0 ak(x− c)k such that

f(x) =

∞∑
k=0

ak(x− c)k · · · · · · · · · (∗)

for all x ∈ (c− δ, c+ δ) ⊆ (a, b).

Remark 5.3.

(i) : Concerning about the definition of a real analytic function f , the expression (∗) above is
uniquely determined by f , that is, each coefficient ak’s is uniquely determined by f . In fact,
by Proposition 4.12, we have seen that f ∈ C∞(a, b) and

ak =
f (k)(c)

k!
· · · · · · · · · (∗∗)

for all k = 0, 1, 2, ....
(ii) : Although every real analytic function is C∞, the following example shows that the converse

does not hold.
Define a function f : R→ R by

f(x) =

{
e−1/x

2
if x 6= 0;

0 if x = 0.

One can directly check that f ∈ C∞(R) and f (k)(0) = 0 for all k = 0, 1, 2.... So if f is real
analytic, then there is δ > 0 such that ak = 0 for all k by the Eq.(∗∗) above and hence f(x) ≡ 0
for all x ∈ (−δ, δ). It is absurd.

(iii) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: f is complex analytic if and
only if it is C∞.

Proposition 5.4. Suppose that f(x) :=
∑∞

k=0 ak(x−c)k is convergent on some open interval I centered
at c, that is I = (c− r, c+ r) for some r > 0. Then f is analytic on I.

Proof. We first note that f ∈ C∞(I). By considering the translation x− c, we may assume that c = 0.
Now fix z ∈ I. Now choose δ > 0 such that (z − δ, z + δ) ⊆ I. We are going to show that

f(x) =

∞∑
j=0

f (j)(z)

j!
(x− z)j .
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for all x ∈ (z − δ, z + δ).
Notice that f(x) is absolutely convergent on I. This implies that

f(x) =
∞∑
k=0

ak(x− z + z)k

=

∞∑
k=0

ak

k∑
j=0

k(k − 1) · · · · · · (k − j + 1)

j!
(x− z)jzk−j

=
∞∑
j=0

(
∑
k≥j

k(k − 1) · · · · · · (k − j + 1)akz
k−j)

(x− z)j

j!

=
∞∑
j=0

f (j)(z)

j!
(x− z)j

for all x ∈ (z − δ, z + δ). The proof is finished. �

Example 5.5. Let α ∈ R. Recall that (1 + x)α is defined by eα ln(1+x) for x > −1.
Now for each k ∈ N, put (

α

k

)
=

{
α(α−1)······(α−k+1)

k! if k 6= 0;

1 if x = 0.

Then

f(x) := (1 + x)α =

∞∑
k=0

(
α

k

)
xk

whenever |x| < 1.
Consequently, f(x) is analytic on (−1, 1).

Proof. Notice that f (k)(x) = α(α− 1) · · · · · · (α− k + 1)(1 + x)α−k for |x| < 1.
Fix |x| < 1. Then by Proposition 5.1, for each positive integer n we have

f(x) =

n−1∑
k=0

f (k)(0)

k!
xk +

∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt

So by the mean value theorem for integrals, for each positive integer n, there is ξn between 0 and x
such that ∫ x

0

f (n)(t)

(n− 1)!
(x− t)n−1dt =

f (n)(ξn)

(n− 1)!
(x− ξn)n−1x

Now write ξn = ηnx for some 0 < ηn < 1 and Rn(x) :=
f (n)(ξn)

(n− 1)!
(x− ξn)n−1x. Then

Rn(x) = (α−n+1)

(
α

n− 1

)
(1+ηnx)α−n(x−ηnx)n−1x = (α−n+1)

(
α

n− 1

)
xn(1+ηnx)α−1(

1− ηn
1 + ηnx

)n−1.

We need to show that Rn(x)→ 0 as n→∞, that is the Taylor series of f centered at 0 converges to

f . By the Ratio Test, it is easy to see that the series
∞∑
k=0

(α − k + 1)

(
α

k

)
yk is convergent as |y| < 1.

This tells us that the series lim
n
|(α− n+ 1)

(
α

n

)
xn| = 0.

On the other hand, note that we always have 0 < 1−ηn < 1 +ηnx for all n because x > −1. Thus, we
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can now conclude that Rn(x)→ 0 as |x| < 1. The proof is finished. Finally the last assertion follows
from Proposition 5.4 at once. The proof is complete. �
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