NOTE OF ELEMENTARY ANALYSIS II

CHI-WAI LEUNG

1. RIEMANN INTEGRALS

Notation 1.1. .

(i) : All functions f, g, h... are bounded real valued functions defined on [a,b]. And m < f < M.
(ii) : P:ra=u1z9 <z < ... < ;Zy = b denotes a partition on |a,b]; Ax; = x; — x;—1 and
||| = max Az;.
(iii) : M;(f,P) :=sup{f(x) : x € [wi—1,zi}; mi(f,P) == inf{f(z) : v € [xi_1,z:i}. And wi(f,P) =
(iv) : U(f,P):=> M;(f,P)Ax;; L(f,P) := > mi(f, P)Ax;.
(v) : R(f,PA&}) = f(&)Azi, where & € [x;—1, 7).

(vi) : Rla,b] is the class of all Riemann integral functions on [a,b].

Definition 1.2. We say that the Riemann sum R(f,P,{&}) converges to a number A as ||P|| — 0 if
for any € > 0, there is § > 0 such that

[A=R(f,PAGH] <e
for any &; € [zi_1,x;] whenever ||P|| < 4.

Theorem 1.3. f € R[a,b] if and only if for any e > 0, there is a partition P such that U(f,P) —
L(f,P) <e.

Lemma 1.4. f € Rla,b] if and only if for any € > 0, there is § > 0 such that U(f,P) — L(f,P) < e
whenever ||P|| < 4.

Proof. The converse follows from Theorem 1.3.
Assume that f is integrable over [a, b]. Let € > 0. Then there is a partition Q:a =yo < ... <y; = bon
[a, b] such that U(f,Q) — L(f,Q) < e. Now take 0 < § < ¢/l. Suppose that P:a =29 < ... <zp =0
with ||P|| < 6. Then we have
U(f,P)—L(f,P)=1+11
where
I = Z wi(f, P)Axy;
QN (xi—1,2:)=0
and
2:QN(zi—1,2:)#D
Notice that we have
I<U(f,Q) —L(f,Q <e
and
IT < (M —m) Yo An<(M-m)-l-
1:QN(zi—1,7:)7#0
The proof is finished. O

7= (M —m)e.
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Theorem 1.5. f € R|a,b] if and only if the Riemann sum R(f,P,{&}) is convergent. In this case,
b

R(f, P, {&}) converges to/ f(x)dx as ||P| — 0.

Proof. For the proof (=) : we first note that we always have

and )
L(f.P) < / f(@)de < U(f,P)

for any &; € [x;—1,x;] and for all partition P.
Now let € > 0. Lemma 1.4 gives 6 > 0 such that U(f,P) — L(f,P) < e as ||P|| < 0. Then we have

b
r/fmm—Mﬁmmw<s

b
as ||P|| < 6. The necessary part is proved and R(f, P, {&}) converges to / f(z)dz.

For (<) : there exists a number A such that for any € > 0, there is § > 0,awe have
A_€<:R(f7?7{§z}) <A+e

for any partition P with ||P|| < d and &; € [z;—1, z;].
Now fix a partition P with ||P|| < 0. Then for each [z;_1, z;], choose & € [z;_1,x;] such that M;(f,P)—
e < f(&)- This implies that we have

U(.fv?)_g(b_a)Sm(fvipa{fz}) <A+te.

So we have shown that for any € > 0, there is a partition P such that

Y
(1.1) / F@)dz <U(f,P) < A+e(1+b—a).

By considering — f, note that the Riemann sum of —f will converge to —A. The inequality 1.1 will
imply that for any € > 0, there is a partition P such that

A—€(1+b—a)S/bf(x)dl‘S/bf(:z)dng-i-e(l-f—b—a).

The proof is finished. ]

Theorem 1.6. Let f € Rlc,d] and let ¢ : [a,b] — [e,d] be a strictly increasing C* function with
f(a) =c and f(b) =d.
Then f o ¢ € R[a,b], moreover, we have

d b
/ f(z)dz = / F(6(0)d ().

Proof. Let A = fcd f(x)dzx. By Theorem 1.5, we need to show that for all € > 0, there is § > 0 such
that

[A= " F(S(E)) (&) Dtr| < &

for all & € [tx—1,tx] whenever Q:a =ty < ... < t,, = b with ||Q| < §.
Now let € > 0. Then by Lemma 1.4 and Theorem 1.5, there is §; > 0 such that

(1.2) A= flm)Dayl < e

and

(1.3) D wr(f,P)Aay < e



for all n € [xx—1,xx] whenever P: c =z < ... <z, = d with ||P| < é;.

Now put = = ¢(t) for ¢ € [a,b].

Now since ¢ and ¢’ are continuous on [a, b], there is 6 > 0 such that |¢(t) — ¢(t')] < 01 and |¢'(t) —
¢ ()| < e for all t,t" infa,b] with [t —t'| <.

Now let Q:a =1ty < ... <ty = b with ||Q|| < 6. If we put x, = ¢(tx), then P:c=29 < ... <z, =d
is a partition on [c,d] with ||P]| < d; because ¢ is strictly increasing.

Note that the Mean Value Theorem implies that for each [tx_1,tx], there is & € (tk—1,tx) such that

Azy, = ¢(tg) — d(tp—1) = ¢ (&) Aty
This yields that
(1.4) |Azp — ¢ (&) Aty| < ety

for any & € [ty—1,tx] for all k = 1,...,m because of the choice of 4.
Now for any & € [tx—1,tx], we have

A= F(O(&)e (&) Ati| < |A — Zf ¢ (&) At
(1.5) F Y FOENG () At — > F(B(E))S (&) At
+1) f<¢<£z>>¢’<fkmtk = F(B(ER)D (&) Ot
Notice that inequality 1.2 implies that
[A =" FBENS () Atk = |A =) F($(&0) D] <e.
Also, since we have |¢/(£}) — ¢/ (&)| < e for all k = 1,..,m, we have
1> F @GN (€At — D> F(S(E0)) S (&r) Ati| < M(b— a)e

where |f(z)] < M for all z € [c,d].
On the other hand, by using inequality 1.4 we have

‘¢/(£k)Atk‘ < A.Tk —+ €Atk
for all k. This, together with inequality 1.3 imply that
1" FB(E) 0 (&) At — D F(6(€0)) S (&) Aty
<> wl(f,P \fﬁ (&x) Atk (- D(8)s B(Ek) € [Th-1, k)

<Y Wil P)(Awg + At
<e+2M(b—a)e.

Finally by inequality 1.5, we have
A=) F(0(R)d (&) Atr| < e+ M(b—a)e + &+ 2M(b — a)e.
The proof is finished. U]

Example 1.7. Define (formally) an improper integral T'(s) ( called the T'-function) as follows:

I'(s) ::/ 25 te " dx
0

for s € R. Then I'(s) is convergent if and only if s > 0.



4 CHI-WAI LEUNG

Proof. Put I(s) := fol 2 le *dx and I1(s) := [[°a* te “dz. We first claim that the integral I1(s)
is convergent for all s € R.

In fact, if we fix s € R, then we have
xsfl
=0.

T—00 61/2

So there is M > 1 such that ii—;; <1 for all z > M. Thus we have

o0 o0
0< / 2 e dx < / e 2 dy < 0.
M M

Therefore we need to show that the integral I(s) is convergent if and only if s > 0.
Note that for 0 < n < 1, we have

! ! 11— if s —1#—1;
OS/ :L’S_le_xdmg/ i’s_ldl': {5( 77) I s 7& )
n n

—1lnn otherwise .

n—0+
Conversely, we also have

-1 .
/1 P /1 s {68(1 —07) s =1,
n n

—ellnn otherwise .

1
Thus the integral I(s) = lim / ¥ te ®dx is convergent if s > 0.
U

So if s < 0, then fnl x5~ te~*dx is divergent as n — 04. The result follows. O

2. UNIFORM CONVERGENCE OF A SEQUENCE OF DIFFERENTIABLE FUNCTIONS

Proposition 2.1. Let f, : (a,b) — R be a sequence of functions. Assume that it satisfies the
following conditions:
(i) : fo(x) point-wise converges to a function f(x) on (a,b);

(ii) : each f, is a C* function on (a,b);

(i11) : fl — g uniformly on (a,b).
Then f is a C'-function on (a,b) with f' = g.
Proof. Fix ¢ € (a,b). Then for each z with ¢ < z < b (similarly, we can prove it in the same way as
a < x < ¢), the Fundamental Theorem of Calculus implies that

fo(z) = /m f'(t)dt.

Since f], — ¢ uniformly on (a,b), we see that

/c T @Wdt— / " ()t

This gives
(2.1) f@) = [ gt

for all x € (¢,b). On the other hand, ¢ is continuous on (a,b) since each f, is continuous and
fI'— g uniformly on (a,b). Equation 2.1 will tell us that f’ exists and f’ = g on (¢,b). The proof is
finished. g

Proposition 2.2. Let (f,) be a sequence of differentiable functions defined on (a,b). Assume that
(i): there is a point ¢ € (a,b) such that lim fy,(c) exists;
(ii): fl converges uniformly to a function g on (a,b).



Then
(a): fn converges uniformly to a function f on (a,b);
(b): f is differentiable on (a,b) and f' = g.

Proof. For Part (a), we will make use the Cauchy theorem.
Let ¢ > 0. Then by the assumptions (i) and (i%), there is a positive integer N such that

[fm(e) = fa(e)] <& and |fp(2) = fo(2)] <e
for all m,n > N and for all € (a,b). Now fix ¢ < z < b and m,n > N. To apply the Mean Value
Theorem for f,, — f, on (¢, z), then there is a point £ between ¢ and x such that

(2.2) fim(@) = fu(@) = fin(c) = fulc) + (f (&) — () (@ — o).
This implies that
[fm(2) = fu(@)] < |fim(e) = fulc)l + /() = fr(Ellz —c] <e+ (b—a)e
for all m,n > N and for all z € (¢,b). Similarly, when z € (a,c), we also have
[fm(z) = ful2)] <2+ (b—a)e.

So Part (a) follows.

Let f be the uniform limit of (f,,) on (a,b)

For Part (b), we fix u € (a,b). We are going to show
S~ T

= g(u).

Let € > 0. Since f, — f and f’ — g both are uniformly convergent on (a,b). Then there is N € N
such that

(2.3) [fm(2) = fu(x)] <& and [fi,(2) = fo(z)] <e

for all m,n > N and for all z € (a,b)
Note that for all m > N and z € (a,b) \ {u}, applying the Mean value Theorem for f,, — fx as before,

we have
fm(x) = fn(x) _ fn(u) = [ (u)
T —u N T —u
for some £ between u and x.
So Eq.2.3 implies that

+ (fr(€) = fn(8)

fm(z) = fm(u) (@) — fn(u)

(2:4) | T—u T—u [se
for all m > N and for all z € (a,b) with = # u.
Taking m — oo in Eq.2.4, we have
S =S @) = fx),
x—u T — U
Hence we have
|f(fv) — f(w) ()] < |f(l‘) —fw) _ In(z) —ﬁv(U)|Jr |fN(fU) —fn(u) ()

r—Uu r—cC r—Uu r—Uu

<op DIV gy

So if we can take 0 < d such that |W — fy(w)| < e for 0 < |z —u| < J, then we have
)_

u

f(x) = f(u)

(2.5) | ~ Fivlw)| < 2¢

T u
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for 0 < |z —u| < 6. On the other hand, by the choice of N, we have |f} (v) — fx(y)| < € for all
y € (a,b) and m > N. So we have |g(u) — fj(u)| < e. This together with Eq.2.5 give

f(@) — f(u
|M — g(u)| < 3¢
T —u
as 0 < |z —u| < 4, that is we have
T—u T — U
The proof is finished. O]

Remark 2.3. The uniform convergence assumption of (f},) in Propositions 2.1 and 2.2 is essential.
Example 2.4. Let f,(z) :=tan"! nz for x € (—1,1). Then we have

/2 if © > 0;
f(z) :=limtan ' nz = { 0 if © = 0;
—7/2 if ¢ < 0.

Also g(z) = lim,, f}(z) = lim,, 1/(1 4+ n?22) = 0 for all x € (—=1,1). So Propositions 2.1 and 2.2 does
not hold. Note that (f]) does not converge uniformly to g on (—1,1).

3. ABSOLUTELY CONVERGENT SERIES

Throughout this section, let (a,) be a sequence of complex numbers.

o0 oo
Definition 3.1. We say that a series Z an s absolutely convergent z'fz lan| < oo.

[ee]

Also a convergent series Z an 18 said to be conditionally convergent if it is not absolute convergent.

n=1

(_1)n+1

- 1s conditionally convergent when
n

[ee]
Example 3.2. Important Example : The series Z
n=1

O0<a<l.

This example shows us that a convergent improper integral may fail to the absolute convergence or
square integrable property.

For instance, if we consider the function f :[1,00) — R given by

(_1)n+1

fla) =2

if n<zr<n+l1.

o
If a =1/2, then / f(x)dx is convergent but it is neither absolutely convergent nor square integrable.
1

Notation 3.3. Let o : {1,2...} — {1,2....} be a bijection. A formal series Za,,(n) is called an

n=1

o0
rearrangement of g Q.

n=1
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Example 3.4. In this example, we are going to show that there is an rearrangement of the series

oo )
-1 i+1
E i is divergent although the original series is convergent. In fact, it is conditionally conver-
i
i=1
gent.

We first notice that the series y .
integer N such that

i 2z 1 diverges to infinity. Thus for each M > 0, there is a positive

1
M
.Z %—1° (+)
=1
for all n > N. Then there is N1 € N such that
Ny

1 1
> 1
;21—1 5~

By using (%) again, there is a positive integer No with N1 < Na such that

N1

1
222_1——+ Z 2 — 1 7>2‘

N1<i<No

To repeat the same procedure, we can find a positive integers subsequence (N) such that

N1
1 1 1 1 1 1
_ P — - k
ZQZ*l 2+ Z 21 —1 4+ Z 21 —1 2k>
=1 N1<i<Na Ni_1<i<Ng

for all positive integers k. So if we let a, = (717):“, then one can find a bijection o : N — N such that

oo :
-1 i+1
the series E ag(;) 18 an rearrangement of the series E i and diverges to infinity. The proof
i
i=1 =1

is finished.

o o0
Theorem 3.5. Let Zan be an absolutely convergent series. Then for any rearrangement Zag(n)

n=1 n=1

1s also absolutely convergent. Moreover, we have Z Gp = Z Ag(n)

n=1 n=1

Proof. Let o : {1,2...} — {1,2...} be a bijection as before.
We first claim that > ag(n) 18 also absolutely convergent.
Let € > 0. Since ), |a,| < oo, there is a positive integer N such that

’aN-&-l“f‘ ......... +‘G/N+p’ <E e (*)
for all p = 1,2.... Notice that since o is a bijection, we can find a positive integer M such that
M > max{j:1<o0(j) < N}. Then o(i) > N if ¢ > M. This together with () imply that if i > M
and p € N, we have
|ag(igry| e |y (ivp)| <€

Thus the series ) a,(,) is absolutely convergent by the Cauchy criteria.
Finally we claim that Y an, = >, o). Put I =3 a, and I’ = 3 a,(n). Now let € > 0. Then
there is V € N such that

N

\l—zan!<6 and  |angq| 4 +langp| <g-ooeoe- (%)

n=1
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for all p € N. Now choose a positive integer M large enough so that {1,..., N} C {o(1),...,0(M)} and
M

— Z%(i)’ < e. Notice that since we have {1,..., N} C {o(1),...,0(M)}, the condition (xx) gives
i=1

N M
[2an =D el < Do lul <e.
n=1 i=1

N<i<oo

We can now conclude that

. - N N - M | M -
L=V <= an] 1Y an = as@l + 1) aom — U] < 3e.
n=1 n=1 i=1

i=1

The proof is complete. ]

4. POWER SERIES

Throughout this section, let
f(z) = Zaixi ............ (%)
denote a formal power series, where a; € R.

Lemma 4.1. Suppose that there is ¢ € R with ¢ # 0 such that f(c) is convergent. Then
(i) : f(z) is absolutely convergent for all x with |z| < |c|.
(ii) : f converges uniformly on [—n,n] for any 0 < n < |c|.

Proof. For Part (i), note that since f(c) is convergent, then lim a,¢™ = 0. So there is a positive integer
N such that |a,c”| <1 for all n > N. Now if we fix |z| < ]c[ then |z/c| < 1. Therefore, we have

Z |an||z"] < Z janlz" + ) lanc"||x/c|* < Z |z + ) |z/c]" < oo
n>N n>N
So Part (i) follows.
Now for Part (i7), if we fix 0 < n < |c| ,then |a,z"| < |a,n|™ for all n and for all € [—n,n]. On the
other hand, we have ) |a,n™| < oo by Part (i). So f converges uniformly on [—n,n] by the M-test.
The proof is finished. 0

Remark 4.2. In Lemma 4.9(ii), notice that if f(c) is convergent, it does not imply f converges
uniformly on [ c, c] in geneml

For example, f =1+ Z . Then f(—1) is convergent but f(1) is divergent.

Definition 4.3. Call the set dom f:={x € R: f(c) is convergent } the domain of convergence of f
for convenience. Let 0 < r :=sup{|c|: ¢ € dom f} < co. Then r is called the radius of convergence

of f.

Remark 4.4. Notice that by Lemma 4.9, then the domain of convergence of f must be the interval
with the end points +r if 0 < r < oco.

When r = 0, then dom f = {0}.

Finally, if r = oo, then dom f = R.
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Example 4.5. If f(z) = >..°  nla™, then r = (0). In fact, notice that if we fir a non-zero number
x and consider lim,, |(n + 1)lz™*|/|nlz"| = oo, then by the ratio test f(x) must be divergent for any
x#0. Sor =0 and dom f = (0).

Example 4.6. Let f(z) = 1+ 3.°° 2"/n". Notice that we have lim,, [z™/n™|"/" = 0 for all 2. So
the root test implies that f(x) is convergent for all x and then r = oo and dom f =R.

Example 4.7. Let f(z) = 1+ o0, 2"/n. Then lim, |2"/(n + 1)| - [n/2"| = |z| for all z # 0.
So by the ration test, we see that if |x| < 1, then f(x) is convergent and if |x| > 1, then f(x) is
divergent. So r = 1. Also, it is known that f(1) is divergent but f(—1) is divergent. Therefore, we
have dom f =[-1,1).

Example 4.8. Let f(z) = Y. 2"/n?. Then by using the same argument of Example 4.7, we have
r = 1. On the other hand, it is known that f(£1) both are convergent. So dom f =[—1,1].

Lemma 4.9. With the notation as above, if r > 0, then f converges uniformly on (—n,n) for any
O<n<r.

Proof. Tt follows from Lemma 4.1 at once. 0

Remark 4.10. Note that the Ezample 4.7 shows us that f may not converge uniformly on (—r,r).
In fact let f be defined as in Example 4.7. Then f does not converges on (—1,1). In fact, if we let
sn(z) = > 00y apwk, then for any positive integer n and 0 < x < 1, we have

mn

— 4o + 5
From this we see that if n is fized, then |son(x) — sp(x)] — 1/2 as ¢ — 1—. So for each n, we can find
0 <z <1 such that |son(x) — sn(z)| > 5 — 1 = 3. Thus f does not converges uniformly on (—1,1) by
the Cauchy Theorem.

|s2n(x) = sn(2)| =

Proposition 4.11. With the notation as above, let = lim |an|1/" or lim |CT”+|1‘ provided it exists.
Then "
: if 0<{<o0;
r=140 if €= oc;
o0 if £=0.

Proposition 4.12. With the notation as above if 0 < r < oo, then f € C*°(—r,r). Moreover, the
k-derivatives f*)(z) = donskakn(n—1)(n—2) - (n —k+ 12" for all x € (—r,7).

Proof. Fix ¢ € (—r,r). By Lemma 4.9, one can choose 0 < 1 < r such that ¢ € (—n,n) and f converges
uniformly on (—n,n).

It needs to show that the k-derivatives f*)(c) exists for all k > 0. Consider the case k = 1 first.

If we consider the series Y o0 ((an2™) = Yo% na,z™!, then it also has the same radius r be-
cause limy, [na,|"/" = lim, |a,|'/". This implies that the series .°° | na,z™~' converges uniformly
on (—n,n). Therefore, the restriction f|(—n,n) is differentiable. In particular, f’(c) exists and
F(0) = 302y nage™ .

So the result can be shown inductively on k. ([l

n—1
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Proposition 4.13. With the notation as above, suppose that r > 0. Then we have

x o0 x (e%e] 1
t)dt = Lt = Lt
| s ;)/0“ > e

0

for allx € (—r,r).

Proof. Fix 0 < x < r. Then by Lemma 4.9 f converges uniformly on [0, z]|. Since each term a,t" is
continuous, the result follows. O

Theorem 4.14. (Abel) : With the notation as above, suppose that 0 < r and f(r) (or f(—r)) exists.
Then f is continuous at x =r (resp. x = —r), that is li>m_ flx) = f(r).

Proof. Note that by considering f(—x), it suffices to show that the case x = r holds.
Assume 7 = 1.

Notice that if f converges uniformly on [0, 1], then f is continuous at x = 1 as desired.
Let £ > 0. Since f(1) is convergent, then there is a positive integer such that

3n+p(x) —sp(z) = an+1$n+1 + an+2$n+1 + an+3xn+1 g + am_pxn-i-l
+ anp2(@" 2 — 2" tappa (2™t ) 4 + gy (22 — 2
(4.1) + an+3 (:L'n+3 — $n+2) o + an+p($n+3 xn+2)

+ appp (P — P

Since z € [0, 1], [a"TF+HL — gntk| = gntk _ gnthtl Qo the Eq.4.1 implies that
|Sntp()—sp(x)] < 5(xn+1—|—(x”+1—x"+2)—|—(x”+2—x"+3)—|—' . -+($"+p_1—x"+p)) = 5(2x”+1—x”+p) < 2¢.

So f converges uniformly on [0, 1] as desired.
Finally for the general case, we consider g(z) := f(rz) = 3, anr™z™. Note that lim,, |a,r"|"/™ = 1
and g(1) = f(r). Then by the case above,, we have shown that

f(r)=9(1) = lim g(z) = lim f(z).
The proof is finished. O

Remark 4.15. In Remark 4.10, we have seen that f may not converges uniformly on (—r,r). How-
ever, in the proof of Abel’s Theorem above, we have shown that if f(£r) both exist, then f converges
uniformly on [—r,r] in this case.



11

5. REAL ANALYTIC FUNCTIONS

Proposition 5.1. Let f € C*°(a,b) and c € (a,b). Then for any x € (a,b) \ {c} and for any n € N,
there is € = £(x,n) between ¢ and x such that

n ) (¢ z f(n+1)
f(x)zzf ( )(x—c)k+/ m(ﬂc—t)”dt
k=0 ¢

k! n!

> £(k)
Call Z / k'(c) (z — ¢)F (may not be convergent) the Taylor series of f at c.
k=0 ’

Proof. 1t is easy to prove by induction on n and the integration by part. O

Definition 5.2. A real-valued function f defined on (a,b) is said to be real analytic if for each
c € (a,b), one can find § > 0 and a power series Y po o ax(z — c)* such that

f(z) = Z ag(z —c)fF (%)
k=0
forallx € (¢ —d,c+6) C (a,b).

Remark 5.3.

(i) : Concerning about the definition of a real analytic function f, the expression (%) above is
uniquely determined by f, that is, each coefficient ay’s is uniquely determined by f. In fact,
by Proposition 4.12, we have seen that f € C*(a,b) and

forallk=0,1,2,....

(ii) : Although every real analytic function is C*°, the following example shows that the converse
does not hold.
Define a function f: R — R by

B e~/ if x #0;
f(‘r)_{o if @=0.

One can directly check that f € C®(R) and f*)(0) = 0 for all k = 0,1,2.... So if f is real
analytic, then there is 6 > 0 such that ai, = 0 for all k by the Eq.(x*) above and hence f(x) =0
for all x € (—0,0). It is absurd.

(11i) Interesting Fact : Let D be an open disc in C. A complex analytic function f on D is
similarly defined as in the real case. However, we always have: fis complex analytic if and
only if it is C°.

Proposition 5.4. Suppose that f(x) :== > 5o, ar(z—c)¥ is convergent on some open interval I centered
at ¢, that is I = (¢ —r,c+ ) for some r > 0. Then f is analytic on I.

Proof. We first note that f € C°°(I). By considering the translation x — ¢, we may assume that ¢ = 0.
Now fix z € I. Now choose § > 0 such that (z — §,z + d) C I. We are going to show that
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for all x € (z — 9,2 + 0).
Notice that f(z) is absolutely convergent on I. This implies that

i
0 3=0 ]
- Y
:Z ( I{;(l{}—l) ...... (k_]+1)akzk ,]) (l’ 'Z)
=0 k>j 7!
> £ '
:Zf .'(Z)($—Z)]
=0 7
for all € (2 —d,z + ). The proof is finished. -

Example 5.5. Let o € R. Recall that (1 + x)* is defined by e*™0+%) for o > —1.

Now for each k € N, put
<a> B a(afl)---l-g-!-(afk+1) Zf k 7& 0;
k) )1 if ©=0.

Then .
fay= =3 (1)et
k=0
whenever |x| < 1.
Consequently, f(x) is analytic on (—1,1).
Proof. Notice that f*)(z) = afa —1)------ (@ —k+1)(1+2)*F for |2] < 1.

Fix |z| < 1. Then by Proposition 5.1, for each positive integer n we have

= v o
fo =31 kfo)xk+/() ({1 _(fi!(a:—t)”ldt

k=0

So by the mean value theorem for integrals, for each positive integer n, there is &, between 0 and x

such that o -
N f " (t) n—1g, _ f " (gn) _ n—1
/0 (n—l)!(x_t) dt = (n—l)!(x &)
Now write &, = f 0 = AR (&) — &)t
n = Npa for some 0 < n, <1 and R,(x) := = 1) (. —&,)" "x. Then

Ry(z) = (a—n—i—l)( )(1+T]nx)°‘"(x—nnx)"1:c - (a—n+1)<

We need to show that R, (z) — 0 as n — oo, that is the Taylor series of f centered at 0 converges to

_ 1*7771, _
n(1 a—1 n 1.
n—1 n—1>z (1+na2) (1+nnx)
«

o
f. By the Ratio Test, it is easy to see that the series Z(Oz —k+1) <k

>yk is convergent as |y| < 1.
k=0

This tells us that the series lim |(a —n 4 1) <a> " = 0.
n n

On the other hand, note that we always have 0 < 1 —n, < 1+ n,x for all n because x > —1. Thus, we



13

can now conclude that R, (x) — 0 as |z| < 1. The proof is finished. Finally the last assertion follows
from Proposition 5.4 at once. The proof is complete. O
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